Search results
Results from the WOW.Com Content Network
Magnetic resonance imaging (MRI) is a non-invasive imaging technique that uses strong magnetic fields and radio waves to generate detailed images of the brain's anatomy and function. [24] It can provide information about blood flow, oxygenation levels, and structural characteristics of the neurovascular unit.
The circle of Willis (also called Willis' circle, loop of Willis, cerebral arterial circle, and Willis polygon) is a circulatory anastomosis that supplies blood to the brain and surrounding structures in reptiles, birds and mammals, including humans. [1] It is named after Thomas Willis (1621–1675), an English physician. [2]
Cerebral blood flow (CBF) is the blood supply to the brain in a given period of time. [8] In an adult, CBF is typically 750 millilitres per minute or 15.8 ± 5.7% of the cardiac output. [9] This equates to an average perfusion of 50 to 54 millilitres of blood per 100 grams of brain tissue per minute. [10] [11] [12]
3D model of cerebral veins. In human anatomy, the cerebral veins are blood vessels in the cerebral circulation which drain blood from the cerebrum of the human brain.They are divisible into external (superficial cerebral veins) and internal (internal cerebral veins) groups according to the outer or inner parts of the hemispheres they drain into.
The basilar artery (U.K.: / ˈ b æ z. ɪ. l ə /; [1] [2] U.S.: / ˈ b æ s. ə. l ər / [3]) is one of the arteries that supplies the brain with oxygen-rich blood.. The two vertebral arteries and the basilar artery are known as the vertebral basilar system, which supplies blood to the posterior part of the circle of Willis and joins with blood supplied to the anterior part of the circle of ...
The superior sagittal sinus (also known as the superior longitudinal sinus), within the human head, is an unpaired dural venous sinus lying along the attached margin of the falx cerebri.
The arachnoid mater makes arachnoid villi, small protrusions through the dura mater into the venous sinuses of the brain, which allow CSF to exit the subarachnoid space and enter the blood stream. Unlike the dura mater, which receives a rich vascular supply from numerous arteries, the arachnoid mater is avascular (lacking blood vessels).
The leptomeningeal collateral circulation (also known as leptomeningeal anastomoses or pial collaterals) is a network of small blood vessels in the brain that connects branches of the middle, anterior and posterior cerebral arteries (MCA, ACA, and PCA), [1] with variation in its precise anatomy between individuals. [2]