enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be ...

  4. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    An electric field is a vector field that associates to each point in space the Coulomb force experienced by a unit test charge. [19] The strength and direction of the Coulomb force F {\textstyle \mathbf {F} } on a charge q t {\textstyle q_{t}} depends on the electric field E {\textstyle \mathbf {E} } established by other charges that it finds ...

  5. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.

  6. Electric-field integral equation - Wikipedia

    en.wikipedia.org/wiki/Electric-field_integral...

    This sort of problem can be solved by imposing the boundary conditions on the incident and scattered field, allowing one to write the EFIE in terms of and J alone. Once this has been done, the integral equation can then be solved by a numerical technique appropriate to integral equations such as the method of moments .

  7. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    Since the potentials satisfy Maxwell's equations, the fields derived for point charge also satisfy Maxwell's equations. The electric field is expressed as: [29] (,) = (() | | + (() ˙) | |) = where is the charge of the point source, is retarded time or the time at which the source's contribution of the electric field originated, () is the ...

  8. Interface conditions for electromagnetic fields - Wikipedia

    en.wikipedia.org/wiki/Interface_conditions_for...

    Interface conditions describe the behaviour of electromagnetic fields; electric field, electric displacement field, and the magnetic field at the interface of two materials. The differential forms of these equations require that there is always an open neighbourhood around the point to which they are applied, otherwise the vector fields and H ...

  9. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    Top: The charge is at rest in frame F, so this observer sees a static electric field. An observer in another frame F ′ moves with velocity v relative to F, and sees the charge move with velocity −v with an altered electric field E due to length contraction and a magnetic field B due to the motion of the charge.