Search results
Results from the WOW.Com Content Network
For an open thermodynamic system in which heat and work are transferred by paths separate from the paths for transfer of matter, using this generic balance equation, with respect to the rate of change with time of the extensive quantity entropy , the entropy balance equation is: [53] [54] [note 1] = = ˙ ^ + ˙ + ˙ where = ˙ ^ is the net rate ...
The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...
This is equivalent to choosing to measure information in nats instead of the usual bits (or more formally, shannons). In practice, information entropy is almost always calculated using base-2 logarithms, but this distinction amounts to nothing other than a change in units. One nat is about 1.44 shannons.
[1] The shannon also serves as a unit of the information entropy of an event, which is defined as the expected value of the information content of the event (i.e., the probability-weighted average of the information content of all potential events). Given a number of possible outcomes, unlike information content, the entropy has an upper bound ...
The absolute entropy (S) of a system may be determined using the third law of thermodynamics, which specifies that the entropy of all perfectly crystalline substances is zero at the absolute zero of temperature. [4] The entropy at another temperature is then equal to the increase in entropy on heating the system reversibly from absolute zero to ...
The Shannon entropy of the random variable above is defined as = = = [ ()], by definition equal to the expected information content of measurement of . [ 3 ] : 11 [ 4 ] : 19–20 The expectation is taken over the discrete values over its support .
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
Although, in both cases, mutual information expresses the number of bits of information common to the two sources in question, the analogy does not imply identical properties; for example, differential entropy may be negative. The differential analogies of entropy, joint entropy, conditional entropy, and mutual information are defined as follows: