Search results
Results from the WOW.Com Content Network
This is equivalent to a formula for the inverse of the distance, and the average value of this is the inverse of 384,399 km (238,854 mi). [9] [10] On the other hand, the time-averaged distance (rather than the inverse of the average inverse distance) between the centers of Earth and the Moon is 385,000.6 km (239,228.3 mi). One can also model ...
This captures the relationship between the distance of planets from the Sun, and their orbital periods. Kepler enunciated in 1619 [ 16 ] this third law in a laborious attempt to determine what he viewed as the " music of the spheres " according to precise laws, and express it in terms of musical notation. [ 25 ]
The distance to the Moon can be measured with millimeter precision. [27] The Moon is spiraling away from Earth at a rate of 3.8 cm/year. [24] [42] This rate has been described as anomalously high. [43] The fluid core of the Moon was detected from the effects of core/mantle boundary dissipation. [44]
This is because the distance between Earth and the Sun is not fixed (it varies between 0.983 289 8912 and 1.016 710 3335 au) and, when Earth is closer to the Sun , the Sun's gravitational field is stronger and Earth is moving faster along its orbital path. As the metre is defined in terms of the second and the speed of light is constant for all ...
The average distance between Neptune and the Sun is 4.5 billion km (about 30.1 astronomical units (AU), the mean distance from the Earth to the Sun), and it completes an orbit on average every 164.79 years, subject to a variability of around ±0.1 years. The perihelion distance is 29.81 AU, and the aphelion distance is 30.33 AU.
Length of a meridian on Earth (distance between Earth's poles along the surface) [37] 40.075 Mm Length of Earth's equator: 10 8: 100 Mm: 142.984 Mm Diameter of Jupiter: 299.792 Mm Distance traveled by light in vacuum in one second (a light-second, exactly 299,792,458 m by definition of the speed of light) 384.4 Mm Moon's orbital distance from ...
Density in g/cm 3. Diffusity in cm 3 /g. These plots show that there are a wide range of densities for planets between Earth and Neptune size, then the planets of 0.6 R Jup size are very low-density and there are very few of them, then the gas giants have a large range of densities.
The formula suggests that, extending outward, each planet should be approximately twice as far from the Sun as the one before. The hypothesis correctly anticipated the orbits of Ceres (in the asteroid belt) and Uranus, but failed as a predictor of Neptune's orbit. It is named after Johann Daniel Titius and Johann Elert Bode.