Search results
Results from the WOW.Com Content Network
Taiji relativity is a formulation of special relativity developed by Jong-Ping Hsu and Leonardo Hsu. [1] [11] [12] [13] The name of the theory, Taiji, is a Chinese word which refers to ultimate principles which predate the existence of the world. Hsu and Hsu claimed that measuring time in units of distance allowed them to develop a theory of ...
Autodynamics – a physics theory proposed in the 1940s that claims the equations of the Lorentz transformation are incorrectly formulated to describe relativistic effects, which would invalidate Einstein's theories of special relativity and general relativity, and Maxwell's equations. The theory is discounted by the mainstream physics community.
It was also claimed that special relativity cannot handle acceleration, which would lead to contradictions in some situations. However, this assessment is not correct, since acceleration actually can be described in the framework of special relativity (see Acceleration (special relativity), Proper reference frame (flat spacetime), Hyperbolic motion, Rindler coordinates, Born coordinates).
In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation.
Vladimir Karapetoff (1944) "The special theory of relativity in hyperbolic functions", Reviews of Modern Physics 16:33–52, Abstract & link to pdf; Lanczos, Cornelius (1949), The Variational Principles of Mechanics, University of Toronto Press, pp. 304– 312 Also used biquaternions. French, Anthony (1968). Special Relativity. W. W. Norton ...
In the rigorous mathematical formulation of special relativity, we suppose that the universe exists on a four-dimensional spacetime M. Individual points in spacetime are known as events ; physical objects in spacetime are described by worldlines (if the object is a point particle) or worldsheets (if the object is larger than a point).
The extended form by Albert Einstein requires special relativity to also hold in free fall and requires the weak equivalence to be valid everywhere. This form was a critical input for the development of the theory of general relativity. The strong form requires Einstein's form to work for stellar objects.
In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend ...