Search results
Results from the WOW.Com Content Network
TK Solver's core technologies are a declarative programming language, algebraic equation solver, [1] an iterative equation solver, and a structured, object-based interface, using a command structure. [ 1 ] [ 7 ] The interface comprises nine classes of objects that can be shared between and merged into other TK files:
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
The equations defining the transformation in two dimensions, which rotates the xy axes counterclockwise through an angle into the x′y′ axes, are derived as follows. In the xy system, let the point P have polar coordinates ( r , α ) {\displaystyle (r,\alpha )} .
Sysquake is a computing environment with interactive graphics for mathematics, physics and engineering. Like other applications from Calerga , it is based on a MATLAB-compatible language. TK Solver is a mathematical modeling and problem-solving software system based on a declarative, rule-based language, commercialized by Universal Technical ...
For the leptons, the gauge group can be written SU(2) l × U(1) L × U(1) R. The two U(1) factors can be combined into U(1) Y × U(1) l, where l is the lepton number. Gauging of the lepton number is ruled out by experiment, leaving only the possible gauge group SU(2) L × U(1) Y. A similar argument in the quark sector also gives the same result ...
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:
The characteristics of the PDE are = (where sign states the two solutions to quadratic equation), so we can use the change of variables = + (for the positive solution) and = (for the negative solution) to transform the PDE to =.
We solve the van der Pol oscillator only up to order 2. This method can be continued indefinitely in the same way, where the order-n term ϵ n x n {\displaystyle \epsilon ^{n}x_{n}} consists of a harmonic term a n cos ( t ) + b n cos ( t ) {\displaystyle a_{n}\cos(t)+b_{n}\cos(t)} , plus some super-harmonic terms a n , 2 cos ( 2 t ...