enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    For the pyramid with an n-sided regular base, it has n + 1 vertices, n + 1 faces, and 2n edges. [18] Such pyramid has isosceles triangles as its faces, with its symmetry is C nv, a symmetry of order 2n: the pyramids are symmetrical as they rotated around their axis of symmetry (a line passing through the apex and the base centroid), and they ...

  3. Square pyramid - Wikipedia

    en.wikipedia.org/wiki/Square_pyramid

    The height of a right square pyramid can be similarly obtained, with a substitution of the slant height formula giving: [6] = =. A polyhedron 's surface area is the sum of the areas of its faces. The surface area A {\displaystyle A} of a right square pyramid can be expressed as A = 4 T + S {\displaystyle A=4T+S} , where T {\displaystyle T} and ...

  4. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    It gives 6 isometries, corresponding to the 6 isometries of the base. As permutations of the vertices, these 6 isometries are the identity 1, (123), (132), (12), (13) and (23), forming the symmetry group C 3v, isomorphic to the symmetric group, S 3. A triangular pyramid has Schläfli symbol {3}∨( ). C 3v C 3 [3] [3] + *33 33: 6 3 Mirrored ...

  5. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    The volume of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex": =, where B 1 and B 2 are the base and top areas, and h 1 and h 2 are the perpendicular heights from the apex to the base and top planes. Considering that

  6. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),

  7. Pentagonal pyramid - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_pyramid

    A pentagonal pyramid has six vertices, ten edges, and six faces. One of its faces is pentagon, a base of the pyramid; five others are triangles. [2] Five of the edges make up the pentagon by connecting its five vertices, and the other five edges are known as the lateral edges of the pyramid, meeting at the sixth vertex called the apex. [3]

  8. Trirectangular tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trirectangular_tetrahedron

    If the legs have lengths a, b, c, then the trirectangular tetrahedron has the volume [2] =. The altitude h satisfies [3] = + +. The area of the base is given by [4] =. The solid angle at the right-angled vertex, from which the opposite face (the base) subtends an octant, has measure π /2 steradians, one eighth of the surface area of a unit sphere.

  9. Hyperpyramid - Wikipedia

    en.wikipedia.org/wiki/Hyperpyramid

    2-dimensional hyperpyramid with a line segment as base 4-dimensional hyperpyramid with a cube as base. In geometry, a hyperpyramid is a generalisation of the normal pyramid to n dimensions. In the case of the pyramid one connects all vertices of the base (a polygon in a plane) to a point outside the plane, which is the peak. The pyramid's ...