Search results
Results from the WOW.Com Content Network
The truncated icosahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex. [5] It has the same symmetry as the regular icosahedron, the icosahedral symmetry , and it also has the property of vertex-transitivity .
(Third compound stellation of icosahedron) I h: 26 Small triambic icosahedron (First stellation of icosahedron) (Triakis icosahedron) I h: 27 Second stellation of icosahedron: I h: 28 Excavated dodecahedron (Third stellation of icosahedron) I h: 29 Fourth stellation of icosahedron: I h: 30 Fifth stellation of icosahedron: I h: 31 Sixth ...
In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, [1] great rhombicosidodecahedron, [2] [3] omnitruncated dodecahedron or omnitruncated icosahedron [4] is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.
In geometry, the rectified truncated icosahedron is a convex polyhedron. It has 92 faces: 60 isosceles triangles , 12 regular pentagons , and 20 regular hexagons . It is constructed as a rectified , truncated icosahedron , rectification truncating vertices down to mid-edges.
The most familiar spherical polyhedron is the soccer ball, thought of as a spherical truncated icosahedron. The next most popular spherical polyhedron is the beach ball, thought of as a hosohedron. Some "improper" polyhedra, such as hosohedra and their duals, dihedra, exist as spherical polyhedra, but their flat-faced analogs are degenerate.
The rhombicosidodecahedron shares the vertex arrangement with the small stellated truncated dodecahedron, and with the uniform compounds of six or twelve pentagrammic prisms. The Zometool kits for making geodesic domes and other polyhedra use slotted balls as connectors. The balls are "expanded" rhombicosidodecahedra, with the squares replaced ...
The pentakis truncated icosahedron is a convex polyhedron constructed as an augmented truncated icosahedron, adding pyramids to the 12 pentagonal faces, creating 60 new triangular faces. It is geometrically similar to the icosahedron where the 20 triangular faces are subdivided with a central hexagon, and 3 corner triangles.
Fuller (1975) used these 6 great circles, along with 15 and 10 others in two other polyhedra to define his 31 great circles of the spherical icosahedron. [ 6 ] The long radius (center to vertex) of the icosidodecahedron is in the golden ratio to its edge length; thus its radius is φ if its edge length is 1, and its edge length is 1 / φ ...