Search results
Results from the WOW.Com Content Network
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.
Hilbert's tenth problem does not ask whether there exists an algorithm for deciding the solvability of Diophantine equations, but rather asks for the construction of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers". That this ...
The difficulty of solving Diophantine equations is illustrated by Hilbert's tenth problem, which was set in 1900 by David Hilbert; it was to find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution. Matiyasevich's theorem implies that such an algorithm cannot exist.
That is, it is impossible to answer the question for all cases. Franzén introduces Hilbert's tenth problem and the MRDP theorem (Matiyasevich-Robinson-Davis-Putnam theorem) which states that "no algorithm exists which can decide whether or not a Diophantine equation has any solution at all". MRDP uses the undecidability proof of Turing ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
"The problem of deciding whether the definite contour multiple integral of an elementary meromorphic function is zero over an everywhere real analytic manifold on which it is analytic", a consequence of the MRDP theorem resolving Hilbert's tenth problem. [6] Determining the domain of a solution to an ordinary differential equation of the form
The Entscheidungsproblem is related to Hilbert's tenth problem, which asks for an algorithm to decide whether Diophantine equations have a solution. The non-existence of such an algorithm, established by the work of Yuri Matiyasevich , Julia Robinson , Martin Davis , and Hilary Putnam , with the final piece of the proof in 1970, also implies a ...
On the one hand, CH implies that there exists a function on the unit square whose iterated integrals are not equal — the function is simply the indicator function of an ordering of [0, 1] equivalent to a well ordering of the cardinal ω 1. A similar example can be constructed using MA.