Search results
Results from the WOW.Com Content Network
Sobolev's original proof of the Sobolev embedding theorem relied on the following, sometimes known as the Hardy–Littlewood–Sobolev fractional integration theorem. An equivalent statement is known as the Sobolev lemma in (Aubin 1982, Chapter 2). A proof is in (Stein 1970, Chapter V, §1.3). Let 0 < α < n and 1 < p < q < ∞.
In mathematics, and in particular in mathematical analysis, the Gagliardo–Nirenberg interpolation inequality is a result in the theory of Sobolev spaces that relates the -norms of different weak derivatives of a function through an interpolation inequality.
In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations , including the theory of harmonic maps .
Whether a space supports a Poincaré inequality has turned out to have deep connections to the geometry and analysis of the space. For example, Cheeger has shown that a doubling space satisfying a Poincaré inequality admits a notion of differentiation. [3] Such spaces include sub-Riemannian manifolds and Laakso spaces.
The trace operator can be defined for functions in the Sobolev spaces , with <, see the section below for possible extensions of the trace to other spaces. Let Ω ⊂ R n {\textstyle \Omega \subset \mathbb {R} ^{n}} for n ∈ N {\textstyle n\in \mathbb {N} } be a bounded domain with Lipschitz boundary.
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of L p-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete , i.e. a Banach space .
For premium support please call: 800-290-4726 more ways to reach us
In mathematics and physics, the diamagnetic inequality relates the Sobolev norm of the absolute value of a section of a line bundle to its covariant derivative. The diamagnetic inequality has an important physical interpretation, that a charged particle in a magnetic field has more energy in its ground state than it would in a vacuum. [1] [2]