enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Negentropy - Wikipedia

    en.wikipedia.org/wiki/Negentropy

    On the diagram one can see the quantity called capacity for entropy. This quantity is the amount of entropy that may be increased without changing an internal energy or increasing its volume. [9] In other words, it is a difference between maximum possible, under assumed conditions, entropy and its actual entropy.

  3. Extremal principles in non-equilibrium thermodynamics

    en.wikipedia.org/wiki/Extremal_principles_in_non...

    Another top expert offers an extensive discussion of the possibilities for principles of extrema of entropy production and of dissipation of energy: Chapter 12 of Grandy (2008) [8] is very cautious, and finds difficulty in defining the 'rate of internal entropy production' in many cases, and finds that sometimes for the prediction of the course ...

  4. Gibbs paradox - Wikipedia

    en.wikipedia.org/wiki/Gibbs_paradox

    The entropy is proportional to the logarithm of the number of states that the gas could have while satisfying these constraints. In classical physics, the number of states is infinitely large, but according to quantum mechanics it is finite. Before the advent of quantum mechanics, this infinity was regularized by making phase space discrete.

  5. Maxwell's demon - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_demon

    Since the demon and the gas are interacting, we must consider the total entropy of the gas and the demon combined. The expenditure of energy by the demon will cause an increase in the entropy of the demon, which will be larger than the lowering of the entropy of the gas. In 1960, Rolf Landauer raised an exception to this argument.

  6. Entropy (order and disorder) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(order_and_disorder)

    Owing to these early developments, the typical example of entropy change ΔS is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases.

  7. Non-equilibrium thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Non-equilibrium_thermodynamics

    The suitable relationship that defines non-equilibrium thermodynamic state variables is as follows. When the system is in local equilibrium, non-equilibrium state variables are such that they can be measured locally with sufficient accuracy by the same techniques as are used to measure thermodynamic state variables, or by corresponding time and space derivatives, including fluxes of matter and ...

  8. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  9. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Here, U is internal energy, T is absolute temperature, S is entropy, P is pressure, and V is volume. This is only one expression of the fundamental thermodynamic relation. It may be expressed in other ways, using different variables (e.g. using thermodynamic potentials). For example, the fundamental relation may be expressed in terms of the ...