Search results
Results from the WOW.Com Content Network
Plants absorb light primarily using the pigment chlorophyll. The green part of the light spectrum is not absorbed but is reflected, which is the reason that most plants have a green color. Besides chlorophyll, plants also use pigments such as carotenes and xanthophylls. [25]
All land plants and green algae possess two forms of this pigment: chlorophyll a and chlorophyll b. Kelps, diatoms, and other photosynthetic heterokonts contain chlorophyll c instead of b, while red algae possess only chlorophyll a. All chlorophylls serve as the primary means plants use to intercept light in order to fuel photosynthesis.
Like plants, the cyanobacteria use water as an electron donor for photosynthesis and therefore liberate oxygen; they also use chlorophyll as a pigment.In addition, most cyanobacteria use phycobiliproteins, water-soluble pigments which occur in the cytoplasm of the chloroplast, to capture light energy and pass it on to the chlorophylls.
The light that is absorbed may be used by the plant to power chemical reactions, while the reflected wavelengths of light determine the color the pigment appears to the eye. Chlorophyll is the primary pigment in plants; it is a porphyrin that absorbs red and blue wavelengths of light while reflecting green .
In general, carotenoids absorb wavelengths ranging from 400 to 550 nanometers (violet to green light). This causes the compounds to be deeply colored yellow, orange, or red. Carotenoids are the dominant pigment in autumn leaf coloration of about 15-30% of tree species, [3] but many plant colors, especially reds and purples, are due to polyphenols.
Many plants lose much of the remaining energy on growing roots. Most crop plants store ~0.25% to 0.5% of the sunlight in the product (corn kernels, potato starch, etc.). Photosynthesis increases linearly with light intensity at low intensity, but at higher intensity this is no longer the case (see Photosynthesis-irradiance curve). Above about ...
This allows plants that may require an animal pollinator to stand out from other flowers or distinguish where their flowers are in a muddied background of other plant parts. [5] For the plant, it is important to share and receive pollen so they can reproduce, maintain their ecological role, and guide the evolutionary history of the population.
There is a method to turn petunia flowers from white to transparent. The petunia flower is immersed into a flask of water, connected to a vacuum pump, after which the flower appeared colourless. The white colour is expressed by the air present in the vacuoles that absorb the light, without air the flower loses the white colour.