Search results
Results from the WOW.Com Content Network
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
The attenuator sequence, which is located between the mRNA leader sequence (5' UTR) and trp operon gene sequence, contains four domains, where domain 3 can pair with domain 2 or domain 4. The attenuator sequence at domain 1 contains instruction for peptide synthesis that requires tryptophans. A high level of tryptophan will permit ribosomes to ...
Gene therapy may be classified into two types by the type of cell it affects: somatic cell and germline gene therapy. In somatic cell gene therapy (SCGT), the therapeutic genes are transferred into any cell other than a gamete, germ cell, gametocyte, or undifferentiated stem cell.
The gene trpP plays a role in trp transportation, while the gene trpG is utilized in the folate operon, and the gene ycbK is involved in synthesis of an efflux protein. The activated TRAP protein is regulated by an anti-TRAP protein and AT synthesis. AT can inactive TRAP to lower the transcription of tryptophan. [21]
An active enhancer regulatory sequence of DNA is enabled to interact with the promoter DNA regulatory sequence of its target gene by formation of a chromosome loop. This can initiate messenger RNA (mRNA) synthesis by RNA polymerase II (RNAP II) bound to the promoter at the transcription start site of the gene.
Computational design and evaluation of DNA circuits to achieve optimal performance. Recent developments in artificial gene synthesis and the corresponding increase in competition within the industry have led to a significant drop in price and wait time of gene synthesis and helped improve methods used in circuit design. [21]
Regulation of gene expression, or gene regulation, [1] includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental ...
There are 52 genes that encode the ribosomal proteins, and they can be found in 20 operons within prokaryotic DNA. Regulation of ribosome synthesis hinges on the regulation of the rRNA itself. First, a reduction in aminoacyl-tRNA will cause the prokaryotic cell to respond by lowering transcription and translation. This occurs through a series ...