enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Metal-induced gap states - Wikipedia

    en.wikipedia.org/wiki/Metal-induced_gap_states

    Similarly, when a metal is deposited onto a semiconductor (by thermal evaporation, for example), the wavefunction of an electron in the semiconductor must match that of an electron in the metal at the interface. Since the Fermi levels of the two materials must match at the interface, there exists gap states that decay deeper into the semiconductor.

  3. Anderson's rule - Wikipedia

    en.wikipedia.org/wiki/Anderson's_rule

    The common anion rule guesses that, since the valence band is related to anionic states, materials with the same anions should have very small valence band offsets. [citation needed] Tersoff [5] proposed the presence of a dipole layer due to induced gap states, by analogy to the metal-induced gap states in a metal–semiconductor junction.

  4. Schottky barrier - Wikipedia

    en.wikipedia.org/wiki/Schottky_barrier

    The nature of these metal-induced gap states and their occupation by electrons tends to pin the center of the band gap to the Fermi level, an effect known as Fermi level pinning. Thus the heights of the Schottky barriers in metal–semiconductor contacts often show little dependence on the value of the semiconductor or metal work functions, in ...

  5. Rashba effect - Wikipedia

    en.wikipedia.org/wiki/Rashba_effect

    Remarkably, this effect can drive a wide variety of novel physical phenomena, especially operating electron spins by electric fields, even when it is a small correction to the band structure of the two-dimensional metallic state. An example of a physical phenomenon that can be explained by Rashba model is the anisotropic magnetoresistance (AMR).

  6. Heterojunction - Wikipedia

    en.wikipedia.org/wiki/Heterojunction

    This model includes a dipole layer at the interface between the two semiconductors which arises from electron tunneling from the conduction band of one material into the gap of the other (analogous to metal-induced gap states). This model agrees well with systems where both materials are closely lattice matched [11] such as GaAs/AlGaAs.

  7. Direct and indirect band gaps - Wikipedia

    en.wikipedia.org/wiki/Direct_and_indirect_band_gaps

    The band gap is called "direct" if the crystal momentum of electrons and holes is the same in both the conduction band and the valence band; an electron can directly emit a photon. In an "indirect" gap, a photon cannot be emitted because the electron must pass through an intermediate state and transfer momentum to the crystal lattice.

  8. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    In Shockley-Read-Hall recombination (SRH), also called trap-assisted recombination, the electron in transition between bands passes through a new energy state (localized state) created within the band gap by a dopant or a defect in the crystal lattice; such energy states are called traps. Non-radiative recombination occurs primarily at such sites.

  9. Fermi level - Wikipedia

    en.wikipedia.org/wiki/Fermi_level

    The shade follows the Fermi–Dirac distribution (black: all states filled, white: no state filled). In metals and semimetals the Fermi level E F lies inside at least one band. In insulators and semiconductors the Fermi level is inside a band gap ; however, in semiconductors the bands are near enough to the Fermi level to be thermally populated ...