enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Model-free (reinforcement learning) - Wikipedia

    en.wikipedia.org/wiki/Model-free_(reinforcement...

    In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), [1] which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward ...

  3. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  4. Glossary of artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_artificial...

    Pronounced "A-star". A graph traversal and pathfinding algorithm which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. abductive logic programming (ALP) A high-level knowledge-representation framework that can be used to solve problems declaratively based on abductive reasoning. It extends normal logic programming by allowing some ...

  5. Determinism - Wikipedia

    en.wikipedia.org/wiki/Determinism

    Mathematical models that are not deterministic because they involve randomness are called stochastic. Because of sensitive dependence on initial conditions , some deterministic models may appear to behave non-deterministically; in such cases, a deterministic interpretation of the model may not be useful due to numerical instability and a finite ...

  6. Mathematical model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_model

    One of the popular examples in computer science is the mathematical models of various machines, an example is the deterministic finite automaton (DFA) which is defined as an abstract mathematical concept, but due to the deterministic nature of a DFA, it is implementable in hardware and software for solving various specific problems. For example ...

  7. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model. [6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol. A TMM can model three different natures: substitutions, additions or deletions.

  8. Double-loop learning - Wikipedia

    en.wikipedia.org/wiki/Double-loop_learning

    Double-loop learning is used when it is necessary to change the mental model on which a decision depends. Unlike single loops, this model includes a shift in understanding, from simple and static to broader and more dynamic, such as taking into account the changes in the surroundings and the need for expression changes in mental models. [3]

  9. Dynamic discrete choice - Wikipedia

    en.wikipedia.org/wiki/Dynamic_discrete_choice

    The bus engine replacement model developed in the seminal paper Rust (1987) is one of the first dynamic stochastic models of discrete choice estimated using real data, and continues to serve as classical example of the problems of this type. [4]