Search results
Results from the WOW.Com Content Network
The muscle tension in the afferent arteriole is modified based on the difference between the sensed concentration and a target concentration. [5] Vasodilation of the afferent arteriole, which results in increased glomerular filtration pressure and tubular fluid flow, occurs when MD cells detect a chloride concentration that is below a target value.
Tubular secretion occurs simultaneously during re-absorption of filtrate. Substances, generally produced by body or the by-products of cell metabolism that can become toxic in high concentration, and some drugs (if taken). These all are secreted into the lumen of renal tubule. Tubular secretion can be either active or passive or co-transport.
Creatinine is removed from the blood chiefly by the kidneys, primarily by glomerular filtration, but also by proximal tubular secretion. Little or no tubular reabsorption of creatinine occurs. If filtration in the kidney is deficient, blood creatinine concentrations rise. Therefore, creatinine concentrations in blood and urine may be used to ...
Thrombopoietin (THPO) also known as megakaryocyte growth and development factor (MGDF) is a protein that in humans is encoded by the THPO gene. Thrombopoietin is a glycoprotein hormone produced by the liver and kidney which regulates the production of platelets .
The processes of blood plasma filtration, tubular reabsorption and tubular secretion occur in the kidneys, and urine formation is a result of these processes. [8] The kidneys produce renin [32] and erythropoietin [33] hormones, and are involved in the conversion of vitamin D to its active form. [34]
The glomerulus (pl.: glomeruli) is a network of small blood vessels (capillaries) known as a tuft, located at the beginning of a nephron in the kidney. Each of the two kidneys contains about one million nephrons. The tuft is structurally supported by the mesangium (the space between the blood vessels), composed of intraglomerular mesangial cells.
Muscle cells also take glucose up through insulin-sensitive GLUT4 glucose channels, and convert it into muscle glycogen. [42] A fall in blood glucose, causes insulin secretion to be stopped, and glucagon to be secreted from the alpha cells into the blood. This inhibits the uptake of glucose from the blood by the liver, fats cells, and muscle.
This blood leaves the glomerulus via the efferent arteriole, which supplies the peritubular capillaries. The higher osmolarity of the blood in the peritubular capillaries creates an osmotic pressure which causes the uptake of water. Other ions can be taken up by the peritubular capillaries via solvent drag. Water is also driven into the ...