Search results
Results from the WOW.Com Content Network
This sum can also be found in the four outer numbers clockwise from the corners (3+8+14+9) and likewise the four counter-clockwise (the locations of four queens in the two solutions of the 4 queens puzzle [50]), the two sets of four symmetrical numbers (2+8+9+15 and 3+5+12+14), the sum of the middle two entries of the two outer columns and rows ...
The number zero for n = 6 is an example of a more general phenomenon: associative magic squares do not exist for values of n that are singly even (equal to 2 modulo 4). [3] Every associative magic square of even order forms a singular matrix , but associative magic squares of odd order can be singular or nonsingular.
A most-perfect magic square of order n is a magic square containing the numbers 1 to n 2 with two additional properties: Each 2 × 2 subsquare sums to 2 s , where s = n 2 + 1. All pairs of integers distant n /2 along a (major) diagonal sum to s .
Examples of broken diagonals from the number square in the image are as follows: 3,12,14,5; 10,1,7,16; 10,13,7,4; 15,8,2,9; 15,12,2,5; and 6,13,11,4. The fact that this square is a pandiagonal magic square can be verified by checking that all of its broken diagonals add up to the same constant:
For example the following sequence can be used to form an order 3 magic square according to the Siamese method (9 boxes): 5, 10, 15, 20, 25, 30, 35, 40, 45 (the magic sum gives 75, for all rows, columns and diagonals). The magic sum in these cases will be the sum of the arithmetic progression used divided by the order of the magic square.
The normal magic constant of order n is n 3 + n / 2 . The largest magic constant of normal magic square which is also a: triangular number is 15 (solve the Diophantine equation x 2 = y 3 + 16y + 16, where y is divisible by 4); square number is 1 (solve the Diophantine equation x 2 = y 3 + 4y, where y is even); generalized pentagonal ...
As a running example, we consider a 10×10 magic square, where we have divided the square into four quarters. The quarter A contains a magic square of numbers from 1 to 25, B a magic square of numbers from 26 to 50, C a magic square of numbers from 51 to 75, and D a magic square of numbers from 76 to 100.
A geometric magic square, often abbreviated to geomagic square, is a generalization of magic squares invented by Lee Sallows in 2001. [1] A traditional magic square is a square array of numbers (almost always positive integers ) whose sum taken in any row, any column, or in either diagonal is the same target number .