Search results
Results from the WOW.Com Content Network
This approach to architecture attempts to balance latency, throughput, and fault-tolerance by using batch processing to provide comprehensive and accurate views of batch data, while simultaneously using real-time stream processing to provide views of online data. The two view outputs may be joined before presentation.
Apache Spark has its architectural foundation in the resilient distributed dataset (RDD), a read-only multiset of data items distributed over a cluster of machines, that is maintained in a fault-tolerant way. [2] The Dataframe API was released as an abstraction on top of the RDD, followed by the Dataset API.
Apache Storm is a distributed stream processing computation framework written predominantly in the Clojure programming language. Originally created by Nathan Marz [2] and team at BackType, [3] the project was open sourced after being acquired by Twitter. [4]
graph with an example of steps in a failure mode and effects analysis. Failure mode and effects analysis (FMEA; often written with "failure modes" in plural) is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects.
The library allows for the development of stateful stream-processing applications that are scalable, elastic, and fully fault-tolerant. The main API is a stream-processing domain-specific language (DSL) that offers high-level operators like filter, map, grouping, windowing, aggregation, joins, and the notion of tables. Additionally, the ...
There are also fundamental challenges that are unique to distributed computing, for example those related to fault-tolerance. Examples of related problems include consensus problems, [59] Byzantine fault tolerance, [60] and self-stabilisation. [61] Much research is also focused on understanding the asynchronous nature of distributed systems:
Apache Flink is an open-source, unified stream-processing and batch-processing framework developed by the Apache Software Foundation. The core of Apache Flink is a distributed streaming data-flow engine written in Java and Scala. [3] [4] Flink executes arbitrary dataflow programs in a data-parallel and pipelined (hence task parallel) manner. [5]
It has also been argued RDBMSs offer out of the box support for column-storage, working with compressed data, indexes for efficient random data access, and transaction-level fault tolerance. [10] Pig Latin is procedural and fits very naturally in the pipeline paradigm while SQL is instead declarative. In SQL users can specify that data from two ...