Search results
Results from the WOW.Com Content Network
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
The Motorola 6800 microprocessor was the first for which an undocumented assembly mnemonic HCF became widely known. The operation codes (opcodes—the portions of the machine language instructions that specify an operation to be performed) hexadecimal 9D and DD were reported and given the unofficial mnemonic HCF in a December 1977 article by Gerry Wheeler in BYTE magazine on undocumented ...
For example, the problem of factoring "Given a positive integer n, find a nontrivial prime factor of n." is a computational problem that has a solution, as there are many known integer factorization algorithms. A computational problem can be viewed as a set of instances or cases together with a, possibly empty, set of solutions for every ...
A solution to Kirkman's schoolgirl problem with vertices denoting girls and colours denoting days of the week [1] Kirkman's schoolgirl problem is a problem in combinatorics proposed by Thomas Penyngton Kirkman in 1850 as Query VI in The Lady's and Gentleman's Diary (pg.48). The problem states:
For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively. A related concept is that of a largely composite number , a positive integer that has at least as many divisors as all smaller positive integers.
The solution is to combine the multiple equations into a single linear Diophantine equation with a much larger modulus M that is the product of all the individual moduli m i, and define M i as =. Thus, each M i is the product of all the moduli except m i. The solution depends on finding N new numbers h i such that
We all know that one friend who mysteriously disappears when the check arrives or moves at a glacial pace when it’s time to tap their credit card.
The solution = is in fact a valid solution to the original equation; but the other solution, =, has disappeared. The problem is that we divided both sides by x {\displaystyle x} , which involves the indeterminate operation of dividing by zero when x = 0. {\displaystyle x=0.}