Search results
Results from the WOW.Com Content Network
Each Platonic solid can therefore be assigned a pair {p, q} of integers, where p is the number of edges (or, equivalently, vertices) of each face, and q is the number of faces (or, equivalently, edges) that meet at each vertex. This pair {p, q}, called the Schläfli symbol, gives a combinatorial description of the polyhedron. The Schläfli ...
Nevertheless, there is general agreement that a polyhedron is a solid or surface that can be described by its vertices (corner points), edges (line segments connecting certain pairs of vertices), faces (two-dimensional polygons), and that it sometimes can be said to have a particular three-dimensional interior volume.
In Jessen's icosahedron, sometimes called Jessen's orthogonal icosahedron, the 12 isosceles faces are arranged differently so that the figure is non-convex and has right dihedral angles. It is scissors congruent to a cube, meaning that it can be sliced into smaller polyhedral pieces that can be rearranged to form a solid cube.
Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.
In geometry, a convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid [1].Some authors exclude uniform polyhedra (in which all vertices are symmetric to each other) from the definition; uniform polyhedra include Platonic and Archimedean solids as well as prisms and antiprisms. [2]
A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.
In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex. A regular polyhedron is identified by its Schläfli symbol of the form { n , m }, where n is the number of sides of each face and m the number of faces ...
Solid geometry or stereometry is the geometry of three-dimensional Euclidean space (3D space). [1] A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior. Solid geometry deals with the measurements of volumes of various solids, including pyramids ...