enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain.It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing).

  3. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    In the last form of the Ramberg–Osgood model, the hardening behavior of the material depends on the material constants and .Due to the power-law relationship between stress and plastic strain, the Ramberg–Osgood model implies that plastic strain is present even for very low levels of stress.

  4. Hyperelastic material - Wikipedia

    en.wikipedia.org/wiki/Hyperelastic_material

    The simplest hyperelastic material model is the Saint Venant–Kirchhoff model which is just an extension of the geometrically linear elastic material model to the geometrically nonlinear regime.

  5. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.

  6. Refractory metals - Wikipedia

    en.wikipedia.org/wiki/Refractory_metals

    Most definitions of the term 'refractory metals' list the extraordinarily high melting point as a key requirement for inclusion. By one definition, a melting point above 4,000 °F (2,200 °C) is necessary to qualify, which includes iridium, osmium, niobium, molybdenum, tantalum, tungsten, rhenium, rhodium, ruthenium and hafnium. [2]

  7. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

  8. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    The Mohr–Coulomb theory is named in honour of Charles-Augustin de Coulomb and Christian Otto Mohr.Coulomb's contribution was a 1776 essay entitled "Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs à l'architecture" .

  9. Flexural strength - Wikipedia

    en.wikipedia.org/wiki/Flexural_strength

    The flexural strength is stress at failure in bending. It is equal to or slightly larger than the failure stress in tension. Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. [1]