Search results
Results from the WOW.Com Content Network
The greatest common divisor of two numbers a and b is the product of the prime factors shared by the two numbers, where each prime factor can be repeated as many times as it divides both a and b. [8]
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
gcd(m, n) (greatest common divisor of m and n) is the product of all prime factors which are both in m and n (with the smallest multiplicity for m and n). m and n are coprime (also called relatively prime) if gcd(m, n) = 1 (meaning they have no common prime factor).
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
48 2 ⋅ 6 ⋅ 210 : 8 5040: 2 4 ⋅ 3 2 ⋅ 5 ⋅ 7 : 4,2,1,1 ... 120 is another superior highly composite number because it has the highest ratio of divisors to ...
Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...
Euler ascertained that 2 31 − 1 = 2147483647 is a prime number; and this is the greatest at present known to be such, and, consequently, the last of the above perfect numbers [i.e., 2 30 (2 31 − 1)], which depends upon this, is the greatest perfect number known at present, and probably the greatest that ever will be discovered; for as they ...
A third difference is that, in the polynomial case, the greatest common divisor is defined only up to the multiplication by a non zero constant. There are several ways to define unambiguously a greatest common divisor. In mathematics, it is common to require that the greatest common divisor be a monic polynomial.