enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler brick - Wikipedia

    en.wikipedia.org/wiki/Euler_brick

    Consequently, the solutions in rational numbers are all rescalings of integer solutions. Given an Euler brick with edge-lengths (a, b, c), the triple (bc, ac, ab) constitutes an Euler brick as well. [1]: p. 106 Exactly one edge and two face diagonals of a primitive Euler brick are odd. At least two edges of an Euler brick are divisible by 3.

  3. File:Euler brick examples.svg - Wikipedia

    en.wikipedia.org/wiki/File:Euler_brick_examples.svg

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  4. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  5. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    A rectangular cuboid with integer edges, as well as integer face diagonals, is called an Euler brick; for example with sides 44, 117, and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists. [7]

  6. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    Euler's argument shows that a necessary condition for the walk of the desired form is that the graph be connected and have exactly zero or two nodes of odd degree. This condition turns out also to be sufficient—a result stated by Euler and later proved by Carl Hierholzer. Such a walk is now called an Eulerian trail or Euler walk in his honor ...

  7. Pythagorean quadruple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_quadruple

    A Pythagorean quadruple is called primitive if the greatest common divisor of its entries is 1. Every Pythagorean quadruple is an integer multiple of a primitive quadruple. The set of primitive Pythagorean quadruples for which a is odd can be generated by the formulas = +, = (+), = (), = + + +, where m, n, p, q are non-negative integers with greatest common divisor 1 such that m + n + p + q is o

  8. List of topics named after Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/List_of_topics_named_after...

    Euler number (algebraic topology) – now, Euler characteristic, classically the number of vertices minus edges plus faces of a polyhedron. Euler number (3-manifold topology) – see Seifert fiber space; Lucky numbers of Euler [4] Euler's constant gamma (γ), also known as the Euler–Mascheroni constant

  9. Project Euler - Wikipedia

    en.wikipedia.org/wiki/Project_Euler

    The first Project Euler problem is Multiples of 3 and 5. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. It is a 5% rated problem, indicating it is one of the easiest on the site.