Search results
Results from the WOW.Com Content Network
Leakage in narrow clearance, spool valve. Hydraulic clearance. Flow in narrow clearances are of vital importance in hydraulic system component design. The flow in a narrow circular clearance of a spool valve can be calculated according to the formula below if the height is negligible compared to the width of the clearance, such as most of the clearances in hydraulic pumps, hydraulic motors ...
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where
In fire protection engineering, the K-factor formula is used to calculate the volumetric flow rate from a nozzle. Spray nozzles can for example be fire sprinklers or water mist nozzles, hose reel nozzles, water monitors and deluge fire system nozzles.
Jump and gap spools are used to bridge gaps between two permanent guide lines. Line length is generally about 50 to 100 ft (15 to 30 m) [4] Safety spools are used in emergencies such as line breaks, searches for a lost guide line or lost diver. They generally carry about 150 ft (46 m) of line, and one should be carried by each diver.
adapter spools (also called crossover spools), used on oilfields and pressure control, have different diameters, pressure ratings or designs at each end [11] adapters to convert NPT to BSP pipe threads are available [12] a fitting that connects threaded and non-threaded pipe [13] [14]
h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)
In fluid dynamics, head is a concept that relates the energy in an incompressible fluid to the height of an equivalent static column of that fluid. From Bernoulli's principle, the total energy at a given point in a fluid is the kinetic energy associated with the speed of flow of the fluid, plus energy from static pressure in the fluid, plus energy from the height of the fluid relative to an ...
It is defined as the pressure exerted by a column of water of 1 inch in height at defined conditions. At a temperature of 4 °C (39.2 °F) pure water has its highest density (1000 kg/m 3). At that temperature and assuming the standard acceleration of gravity, 1 inAq is approximately 249.082 pascals (0.0361263 psi). [2]