Search results
Results from the WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
The 6x6 matrix representing an element will have a 1 in every position that has the letter of the element in the Cayley table and a zero in every other position, the Kronecker delta function for that symbol. (Note that e is in every position down the main diagonal, which gives us the identity matrix for 6x6 matrices in this case, as we would ...
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
An n × n matrix commutes with every other n × n matrix if and only if it is a scalar matrix, that is, a matrix of the form , where is the n × n identity matrix and is a scalar. In other words, the center of the group of n × n matrices under multiplication is the subgroup of scalar matrices.
Matrix multiplication; Polynomial evaluation (e.g., with Horner's rule) Newton's method for evaluating functions (from the inverse function) Convolutions and artificial neural networks; Multiplication in double-double arithmetic; Fused multiply–add can usually be relied on to give more accurate results.