Search results
Results from the WOW.Com Content Network
A light source passes behind a gravitational lens (invisible point mass placed in the center of the image). The aqua circle is the light source as it would be seen if there were no lens, while white spots are the multiple images of the source (see Einstein ring).
Solar gravitational lens point, on a logarithmic scale. A solar gravitational lens or solar gravity lens (SGL) is a theoretical method of using the Sun as a large lens with a physical effect called gravitational lensing. [1] It is considered one of the best methods to directly image habitable exoplanets.
An Einstein Ring is a special case of gravitational lensing, caused by the exact alignment of the source, lens, and observer. This results in symmetry around the lens, causing a ring-like structure. [2] The geometry of a complete Einstein ring, as caused by a gravitational lens. The size of an Einstein ring is given by the Einstein radius.
Gravitational microlensing is an astronomical phenomenon caused by the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit.
While gravitational lensing preserves surface brightness, as dictated by Liouville's theorem, lensing does change the apparent solid angle of a source. The amount of magnification is given by the ratio of the image area to the source area. For a circularly symmetric lens, the magnification factor μ is given by
“Gravitational lensing therefore is sensitive to the presence of this dark matter, allowing us to indirectly detect it. For example, the size of the Einstein ring depends on the amount of mass ...
Gravitational lensing is an effect of gravitation, most commonly associated with General relativity Wikimedia Commons has media related to Gravitational lensing . Subcategories
The geometry of gravitational lenses In the following derivation of the Einstein radius, we will assume that all of mass M of the lensing galaxy L is concentrated in the center of the galaxy. For a point mass the deflection can be calculated and is one of the classical tests of general relativity .