Search results
Results from the WOW.Com Content Network
The strong interaction, or strong nuclear force, is the most complicated interaction, mainly because of the way it varies with distance. The nuclear force is powerfully attractive between nucleons at distances of about 1 femtometre (fm, or 10 −15 metres), but it rapidly decreases to insignificance at distances beyond about 2.5 fm. At ...
In physics, a unified field theory (UFT) is a type of field theory that allows all fundamental forces and elementary particles to be written in terms of a single type of field. According to modern discoveries in physics, forces are not transmitted directly between interacting objects but instead are described and interpreted by intermediary ...
The strong force overpowers the electrostatic repulsion of protons and quarks in nuclei and hadrons respectively, at their respective scales. While quarks are bound in hadrons by the fundamental strong interaction, which is mediated by gluons, nucleons are bound by an emergent phenomenon termed the residual strong force or nuclear force.
Although this unified force has not been directly observed, many GUT models theorize its existence. If the unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct.
The strong force is the fundamental force mediated by gluons, acting upon quarks, antiquarks, and the gluons themselves. The strong force only acts directly upon elementary particles. A residual is observed between hadrons (notably, the nucleons in atomic nuclei), known as the nuclear force.
The parameter characterizes the strength and the range of the interaction. [2] Fischbach's paper found a strength around 1% of gravity and a range of a few hundred meters. [ 5 ] : 26 The effect of this potential can be described equivalently as exchange of vector and/or scalar bosons, that is a predicting as yet undetected new particles. [ 2 ]
Since the additional particles involved beyond the single force carrier approximation are always virtual, i.e. transient quantum field fluctuations, one understands why the running of a coupling is a genuine quantum and relativistic phenomenon, namely an effect of the high-order Feynman diagrams on the strength of the force.
The strong force is the expression of the gluon interaction with other quark and gluon particles. All quarks and gluons in QCD interact with each other through the strong force. The strength of interaction is parameterized by the strong coupling constant. This strength is modified by the gauge color charge of the particle, a group-theoretical ...