Search results
Results from the WOW.Com Content Network
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
Total ionic strength adjustment buffer (TISAB) is a buffer solution which increases the ionic strength of a solution to a relatively high level. This is important for potentiometric measurements, including ion selective electrodes, because they measure the activity of the analyte rather than its concentration. TISAB essentially masks minor ...
For alkaline buffers, a strong base such as sodium hydroxide may be added. Alternatively, a buffer mixture can be made from a mixture of an acid and its conjugate base. For example, an acetate buffer can be made from a mixture of acetic acid and sodium acetate. Similarly, an alkaline buffer can be made from a mixture of the base and its ...
The program mediates between two terminological concepts: The calculations are performed in the "scientific realm" of thermodynamics (activities, speciation, log K values, ionic strength, etc.). Then, the output is translated into the "language" of common use: molar and mass concentrations, alkalinity, buffer capacities, water hardness ...
Dependence of pKa2 of phosphate buffer on ionic strength and temperature The Henderson–Hasselbalch equation gives the pH of a solution relative to the p K a of the acid–base pair. However the p K a is dependent on ionic strength and temperature, and as it shifts so will the pH of a solution based on that acid–base pair.
The pH (and pK a at ionic strength I≠0) of the buffer solution changes with concentration and temperature, and this effect may be predicted using online calculators. [2] MES is highly soluble in water. The melting point is approx. 300 °C. MES was developed as one of Good's buffers in the 1960s.
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.
The Debye–Hückel theory [7] was based on the assumption that each ion was surrounded by a spherical "cloud" or ionic atmosphere made up of ions of the opposite charge. Expressions were derived for the variation of single-ion activity coefficients as a function of ionic strength. This theory was very successful for dilute solutions of 1:1 ...