Search results
Results from the WOW.Com Content Network
The sixteen equatorial quadrangles are the smallest, with surface areas of 4,500,000 square kilometres (1,700,000 sq mi) each, while the twelve mid-latitude quadrangles each cover 4,900,000 square kilometres (1,900,000 sq mi). The two polar quadrangles are the largest, with surface areas of 6,800,000 square kilometres (2,600,000 sq mi) each.
Mars hosts many enormous extinct volcanoes (the tallest is Olympus Mons, 21.9 km or 13.6 mi tall) and one of the largest canyons in the Solar System (Valles Marineris, 4,000 km or 2,500 mi long). Geologically , the planet is fairly active with marsquakes trembling underneath the ground, dust devils sweeping across the landscape, and cirrus clouds .
This list contains a selection of objects 50 and 99 km in radius (100 km to 199 km in average diameter). The listed objects currently include most objects in the asteroid belt and moons of the giant planets in this size range, but many newly discovered objects in the outer Solar System are missing, such as those included in the following ...
The Medusae Fossae Formation is a soft, easily eroded deposit that extends for nearly 1,000 km along the equator of Mars. Sometimes the formation appears as a smooth and gently undulating surface; however, in places it is wind-sculpted into ridges and grooves. [ 18 ]
Global study of residual Bouguer anomaly data indicates that crustal thickness of Mars varies from 5.8 km to 102 km. [5] Two major peaks at 32 km and 58 km are identified from an equal-area histogram of crustal thickness. [5] These two peaks are linked to the crustal dichotomy of Mars. [5]
It equals (3.986 004 418 ± 0.000 000 008) × 10 14 m 3 ⋅s −2. [ 4 ] The value of this constant became important with the beginning of spaceflight in the 1950s, and great effort was expended to determine it as accurately as possible during the 1960s.
Mars has a higher scale height of 11.1 km than Earth (8.5 km) because of its weaker gravity. [5] The theoretical dry adiabatic lapse rate of Mars is 4.3 °C km −1 , [ 131 ] but the measured average lapse rate is about 2.5 °C km −1 because the suspended dust particles absorb solar radiation and heat the air. [ 2 ]
Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.