enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    The relativistic energy–momentum equation holds for all particles, even for massless particles for which m 0 = 0. In this case: = When substituted into Ev = c 2 p, this gives v = c: massless particles (such as photons) always travel at the speed of light.

  4. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Because the relativistic mass is exactly proportional to the relativistic energy, relativistic mass and relativistic energy are nearly synonymous; the only difference between them is the units. The rest mass or invariant mass of an object is defined as the mass an object has in its rest frame, when it is not moving with respect to the observer.

  5. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:

  6. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The equation is often written this way because the difference is the relativistic length of the energy momentum four-vector, a length which is associated with rest mass or invariant mass in systems. Where m > 0 and p = 0, this equation again expresses the mass–energy equivalence E = m.

  7. Relativistic particle - Wikipedia

    en.wikipedia.org/wiki/Relativistic_particle

    These two types of relativistic particles are remarked as massless and massive, respectively. In experiments, massive particles are relativistic when their kinetic energy is comparable to or greater than the energy = corresponding to their rest mass. In other words, a massive particle is relativistic when its total mass-energy is at least twice ...

  8. Energy condition - Wikipedia

    en.wikipedia.org/wiki/Energy_condition

    In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically phrased mathematical formulation. There are multiple possible alternative ways to express such a condition such that ...

  9. Stress–energy tensor - Wikipedia

    en.wikipedia.org/wiki/Stress–energy_tensor

    In general relativity, the stress–energy tensor is studied in the context of the Einstein field equations which are often written as + =, where = is the Einstein tensor, is the Ricci tensor, = is the scalar curvature, is the metric tensor, Λ is the cosmological constant (negligible at the scale of a galaxy or smaller), and = / is the ...