Search results
Results from the WOW.Com Content Network
Intermediate organization of covalent bonds: Regarding the organization of covalent bonds, recall that classic molecular solids, as stated above, consist of small, non-polar covalent molecules. The example given, paraffin wax, is a member of a family of hydrocarbon molecules of differing chain lengths, with high-density polyethylene at the long ...
Pauling invoked the principle of electroneutrality in a 1952 paper to suggest that pi bonding is present, for example, in molecules with 4 Si-O bonds. [8] The oxygen atoms in such molecules would form polar covalent bonds with the silicon atom because their electronegativity (electron withdrawing power) was higher than that of silicon.
Although the bond in a compound like X+Y- may be considered to be 100% ionic, it will always have some degree of covalent character. When two oppositely charged ions (X+ and Y-) approach each other, the cation attracts electrons in the outermost shell of the anion but repels the positively charged nucleus.
[2] [3] The term covalent bond dates from 1939. [4] The prefix co-means jointly, associated in action, partnered to a lesser degree, etc.; thus a "co-valent bond", in essence, means that the atoms share "valence", such as is discussed in valence bond theory. In the molecule H 2, the hydrogen atoms share the two electrons via covalent bonding. [5]
Valence bond theory proposes that covalent bonds consist of two electrons lying in overlapping, usually hybridised, atomic orbitals from two bonding atoms. The assumption that a covalent bond is a linear combination of atomic orbitals of just the two bonding atoms is an approximation (see molecular orbital theory), but valence bond theory is ...
An important aspect of the valence bond theory is the condition of maximum overlap, which leads to the formation of the strongest possible bonds. This theory is used to explain the covalent bond formation in many molecules. sp 3 hybridization in methane forms four equivalent sigma bonds with tetrahedral geometry.
Molecules that are formed primarily from non-polar covalent bonds are often immiscible in water or other polar solvents, but much more soluble in non-polar solvents such as hexane. A polar covalent bond is a covalent bond with a significant ionic character. This means that the two shared electrons are closer to one of the atoms than the other ...
Reversible covalent – a chemical bond is formed, however the free energy difference separating the noncovalently-bonded reactants from bonded product is near equilibrium and the activation barrier is relatively low such that the reverse reaction which cleaves the chemical bond easily occurs; Irreversible covalent – a chemical bond is formed ...