Search results
Results from the WOW.Com Content Network
The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m 2), the SI derived unit of area; and the kilogram per cubic metre (kg/m 3 or kg⋅m −3), the SI derived unit of density.
henry per metre: H/m kg⋅m ⋅s −2 ⋅A −2: χ magnetic susceptibility (dimensionless) 1 1 m magnetic dipole moment: ampere square meter: A⋅m 2 = J⋅T −1: A⋅m 2: σ mass magnetization: ampere square meter per kilogram: A⋅m 2 /kg A⋅m 2 ⋅kg −1
In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0 , also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum .
pascal (Pa) or newton per square meter (N/m 2) gluon field strength tensor: inverse length squared (1/m 2) acceleration due to gravity: meters per second squared (m/s 2), or equivalently, newtons per kilogram (N/kg) magnetic field strength: ampere per meter (A/m) Hamiltonian: joule (J) enthalpy
is the motor torque constant (SI unit, newton–metre per ampere, N·m/A), see below If two motors with the same K v {\displaystyle K_{\text{v}}} and torque work in tandem, with rigidly connected shafts, the K v {\displaystyle K_{\text{v}}} of the system is still the same assuming a parallel electrical connection.
F is force (SI unit: newton) q m1 and q m2 are the magnitudes of magnetic charge on magnetic poles (SI unit: ampere-meter) μ is the permeability of the intervening medium (SI unit: tesla meter per ampere, henry per meter or newton per ampere squared) r is the separation (SI unit: meter).
From 1948 until 2019 the ampere was defined as "that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2 × 10 −7 newton per metre of length".
The newton (symbol: N) is the unit of force in the International System of Units (SI). Expressed in terms of SI base units, it is 1 kg⋅m/s 2, the force that accelerates a mass of one kilogram at one metre per second squared. The unit is named after Isaac Newton in recognition of his work on classical mechanics, specifically his second law of ...