Search results
Results from the WOW.Com Content Network
In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1 (thus excluding the circular orbit).
Harmonic and subharmonic orbits are special types of such closed orbits. A closed trajectory is called a harmonic orbit if k is an integer, i.e., if n = 1 in the formula k = m / n . For example, if k = 3 (green planet in Figures 1 and 4, green orbit in Figure 9), the resulting orbit is the third harmonic of the original orbit.
All bounded orbits where the gravity of a central body dominates are elliptical in nature. A special case of this is the circular orbit, which is an ellipse of zero eccentricity. The formula for the velocity of a body in a circular orbit at distance r from the center of gravity of mass M can be derived as follows:
Orbits around the L 1 point are used by spacecraft that want a constant view of the Sun, such as the Solar and Heliospheric Observatory. Orbits around L 2 are used by missions that always want both Earth and the Sun behind them. This enables a single shield to block radiation from both Earth and the Sun, allowing passive cooling of sensitive ...
The elliptical orbits of planets were indicated by calculations of the orbit of Mars. From this, Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. The second law establishes that when a planet is closer to the Sun, it travels faster.
Parabolic (1) and hyperbolic (3) orbits are escape orbits, whereas elliptical and circular orbits (2) are captive. The orbital plane of a revolving body is the geometric plane in which its orbit lies. Three non-collinear points in space suffice to determine an orbital plane.
This third force causes the particle's elliptical orbit to precess (cyan orbit) in the direction of its rotation; this effect has been measured in Mercury, Venus and Earth. The yellow dot within the orbits represents the center of attraction, such as the Sun. The orbital precession rate may be derived using this radial effective potential V.
An elliptic Kepler orbit with an eccentricity of 0.7, a parabolic Kepler orbit and a hyperbolic Kepler orbit with an eccentricity of 1.3. The distance to the focal point is a function of the polar angle relative to the horizontal line as given by the equation ()