enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alternating series test - Wikipedia

    en.wikipedia.org/wiki/Alternating_series_test

    The test was devised by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion. The test is only sufficient, not necessary, so some convergent alternating series may fail the first part of the test. [1] [2] [3] For a generalization, see Dirichlet's test. [4] [5] [6]

  3. Alternating series - Wikipedia

    en.wikipedia.org/wiki/Alternating_series

    Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms a n converge to 0 monotonically, but this condition is not necessary for convergence.

  4. Template:Animation/testcases - Wikipedia

    en.wikipedia.org/wiki/Template:Animation/testcases

    This is the template test cases page for the sandbox of Template:Animation to update the examples. If there are many examples of a complicated template, later ones may break due to limits in MediaWiki; see the HTML comment "NewPP limit report" in the rendered page. You can also use Special:ExpandTemplates to examine the results of template uses. You can test how this page looks in the ...

  5. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.

  6. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  7. Dirichlet eta function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_eta_function

    Color representation of the Dirichlet eta function. It is generated as a Matplotlib plot using a version of the Domain coloring method. [1]In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0: = = = + +.

  8. Abel's test - Wikipedia

    en.wikipedia.org/wiki/Abel's_test

    It can also be applied to a power series with radius of convergence R ≠ 1 by a simple change of variables ζ = z/R. [2] Notice that Abel's test is a generalization of the Leibniz Criterion by taking z = −1. Proof of Abel's test: Suppose that z is a point on the unit circle, z ≠ 1. For each , we define

  9. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.