enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...

  3. Geopotential - Wikipedia

    en.wikipedia.org/wiki/Geopotential

    G = 6.673 × 10 −11 Nm 2 /kg 2 is the gravitational constant, m = 5.975 × 10 24 kg is the mass of the earth, a = 6.378 × 10 6 m is the average radius of the earth, z is the geometric height in meters

  4. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    In addition to Poynting, measurements were made by C. V. Boys (1895) [25] and Carl Braun (1897), [26] with compatible results suggesting G = 6.66(1) × 10 −11 m 3 ⋅kg −1 ⋅s −2. The modern notation involving the constant G was introduced by Boys in 1894 [12] and becomes standard by the end of the 1890s, with values usually cited in the ...

  5. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity ...

  6. Theoretical gravity - Wikipedia

    en.wikipedia.org/wiki/Theoretical_gravity

    rad/s is the diurnal angular speed of the Earth axis, and km the radius of the reference sphere, and ⁡ the distance of the point on the Earth crust to the Earth axis. [ 3 ] For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the ...

  7. Earth’s core has slowed so much it’s moving backward ...

    www.aol.com/news/scientists-ve-confirmed...

    Scientists say they’ve confirmed Earth’s inner core has been slowing down. Here’s what it could mean — and why the topic has been the subject of fierce debate.

  8. Surface gravity - Wikipedia

    en.wikipedia.org/wiki/Surface_gravity

    The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass.

  9. Gravitational potential - Wikipedia

    en.wikipedia.org/wiki/Gravitational_potential

    The absolute value of gravitational potential at a number of locations with regards to the gravitation from [clarification needed] the Earth, the Sun, and the Milky Way is given in the following table; i.e. an object at Earth's surface would need 60 MJ/kg to "leave" Earth's gravity field, another 900 MJ/kg to also leave the Sun's gravity field ...