enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...

  3. Geopotential - Wikipedia

    en.wikipedia.org/wiki/Geopotential

    G = 6.673 × 10 −11 Nm 2 /kg 2 is the gravitational constant, m = 5.975 × 10 24 kg is the mass of the earth, a = 6.378 × 10 6 m is the average radius of the earth, z is the geometric height in meters

  4. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The constant of proportionality, G, in this non-relativistic formulation is the gravitational constant. Colloquially, the gravitational constant is also called "Big G", distinct from "small g" (g), which is the local gravitational field of Earth (also referred to as free-fall acceleration).

  5. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    It is a generalisation of the vector form, which becomes particularly useful if more than two objects are involved (such as a rocket between the Earth and the Moon). For two objects (e.g. object 2 is a rocket, object 1 the Earth), we simply write r instead of r 12 and m instead of m 2 and define the gravitational field g(r) as:

  6. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity ...

  7. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation.Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle.

  8. Earth’s core has slowed so much it’s moving backward ...

    www.aol.com/scientists-ve-confirmed-slowdown...

    Earth’s magnetic field yanks at this solid ball of hot metal, making it spin. At the same time, the gravity and flow of the fluid outer core and mantle drag at the core.

  9. Theoretical gravity - Wikipedia

    en.wikipedia.org/wiki/Theoretical_gravity

    rad/s is the diurnal angular speed of the Earth axis, and km the radius of the reference sphere, and ⁡ the distance of the point on the Earth crust to the Earth axis. [ 3 ] For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the ...