Search results
Results from the WOW.Com Content Network
Similarly to Prim's algorithm there are components in Kruskal's approach that can not be parallelised in its classical variant. For example, determining whether or not two vertices are in the same subtree is difficult to parallelise, as two union operations might attempt to join the same subtrees at the same time.
Kruskal's algorithm [1] finds a minimum spanning forest of an undirected edge-weighted graph. If the graph is connected , it finds a minimum spanning tree . It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle . [ 2 ]
Prim's algorithm has many applications, such as in the generation of this maze, which applies Prim's algorithm to a randomly weighted grid graph. The time complexity of Prim's algorithm depends on the data structures used for the graph and for ordering the edges by weight, which can be done using a priority queue. The following table shows the ...
For example, Kruskal's algorithm processes edges in turn, deciding whether to include the edge in the MST based on whether it would form a cycle with all previously chosen edges. Both Prim's algorithm and Kruskal's algorithm require processes to know the state of the whole graph, which is very difficult to discover in the message-passing model.
Such a tree can be found with algorithms such as Prim's or Kruskal's after multiplying the edge weights by -1 and solving the MST problem on the new graph. A path in the maximum spanning tree is the widest path in the graph between its two endpoints: among all possible paths, it maximizes the weight of the minimum-weight edge. [21]
Examples of such greedy algorithms are Kruskal's algorithm and Prim's algorithm for finding minimum spanning trees and the algorithm for finding optimum Huffman trees. Greedy algorithms appear in the network routing as well. Using greedy routing, a message is forwarded to the neighbouring node which is "closest" to the destination.
The key insight to the algorithm is a random sampling step which partitions a graph into two subgraphs by randomly selecting edges to include in each subgraph. The algorithm recursively finds the minimum spanning forest of the first subproblem and uses the solution in conjunction with a linear time verification algorithm to discard edges in the graph that cannot be in the minimum spanning tree.
The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree T with a root, and given vertices v, w, call w a successor of v if the unique path from the root to w contains v, and call w an immediate successor of v if additionally the path from v to w contains no other vertex.