enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    The principle of the number field sieve (both special and general) can be understood as an improvement to the simpler rational sieve or quadratic sieve. When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2.

  3. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    To further reduce the computational cost, the integers are first checked for any small prime divisors using either sieves similar to the sieve of Eratosthenes or trial division. Integers of special forms, such as Mersenne primes or Fermat primes, can be efficiently tested for primality if the prime factorization of p − 1 or p + 1 is known.

  4. Rational sieve - Wikipedia

    en.wikipedia.org/wiki/Rational_sieve

    In mathematics, the rational sieve is a general algorithm for factoring integers into prime factors. It is a special case of the general number field sieve. While it is less efficient than the general algorithm, it is conceptually simpler. It serves as a helpful first step in understanding how the general number field sieve works.

  5. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime's square). In mathematics, the sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.

  6. Sieve theory - Wikipedia

    en.wikipedia.org/wiki/Sieve_theory

    The sieve methods discussed in this article are not closely related to the integer factorization sieve methods such as the quadratic sieve and the general number field sieve. Those factorization methods use the idea of the sieve of Eratosthenes to determine efficiently which members of a list of numbers can be completely factored into small primes.

  7. Smooth number - Wikipedia

    en.wikipedia.org/wiki/Smooth_number

    Note the set A does not have to be a set of prime factors, but it is typically a proper subset of the primes as seen in the factor base of Dixon's factorization method and the quadratic sieve. Likewise, it is what the general number field sieve uses to build its notion of smoothness, under the homomorphism ϕ : Z [ θ ] → Z / n Z ...

  8. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    The primary improvement that quadratic sieve makes over Fermat's factorization method is that instead of simply finding a square in the sequence of , it finds a subset of elements of this sequence whose product is a square, and it does this in a highly efficient manner.

  9. Sieve of Pritchard - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Pritchard

    Sieve of Pritchard: algorithm steps for primes up to 150. In mathematics, the sieve of Pritchard is an algorithm for finding all prime numbers up to a specified bound. Like the ancient sieve of Eratosthenes, it has a simple conceptual basis in number theory. [1] It is especially suited to quick hand computation for small bounds.