enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    With the rise of deep learning, a new family of methods, called deep generative models (DGMs), [8] [9] is formed through the combination of generative models and deep neural networks. An increase in the scale of the neural networks is typically accompanied by an increase in the scale of the training data, both of which are required for good ...

  3. Diffusion model - Wikipedia

    en.wikipedia.org/wiki/Diffusion_model

    In machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable generative models. A diffusion model consists of three major components: the forward process, the reverse process, and the sampling procedure. [1]

  4. Probabilistic neural network - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_neural_network

    A probabilistic neural network (PNN) [1] is a feedforward neural network, which is widely used in classification and pattern recognition problems. In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function.

  5. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

  6. Flow-based generative model - Wikipedia

    en.wikipedia.org/wiki/Flow-based_generative_model

    A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.

  7. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Neural_network_Gaussian...

    Deep learning and artificial neural networks are approaches used in machine learning to build computational models which learn from training examples. Bayesian neural networks merge these fields. They are a type of neural network whose parameters and predictions are both probabilistic.

  8. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Binary probabilistic classifiers are also called binary regression models in statistics. In econometrics , probabilistic classification in general is called discrete choice . Some classification models, such as naive Bayes , logistic regression and multilayer perceptrons (when trained under an appropriate loss function ) are naturally ...

  9. Discriminative model - Wikipedia

    en.wikipedia.org/wiki/Discriminative_model

    In addition, most discriminative models are inherently supervised and cannot easily support unsupervised learning. Application-specific details ultimately dictate the suitability of selecting a discriminative versus generative model. Discriminative models and generative models also differ in introducing the posterior possibility. [6]