enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Bayesian statistics (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a theory in the field of statistics based on the Bayesian interpretation of probability, where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous ...

  3. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  4. Andrew Gelman - Wikipedia

    en.wikipedia.org/wiki/Andrew_Gelman

    Andrew Eric Gelman (born February 11, 1965) is an American statistician and professor of statistics and political science at Columbia University. Gelman received bachelor of science degrees in mathematics and in physics from MIT , where he was a National Merit Scholar , in 1986.

  5. Deviance information criterion - Wikipedia

    en.wikipedia.org/wiki/Deviance_information_criterion

    A resolution to the issues above was suggested by Ando (2007), with the proposal of the Bayesian predictive information criterion (BPIC). Ando (2010, Ch. 8) provided a discussion of various Bayesian model selection criteria. To avoid the over-fitting problems of DIC, Ando (2011) developed Bayesian model selection criteria from a predictive view ...

  6. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    After the arrival of new information, the current posterior probability may serve as the prior in another round of Bayesian updating. [ 3 ] In the context of Bayesian statistics , the posterior probability distribution usually describes the epistemic uncertainty about statistical parameters conditional on a collection of observed data.

  7. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  8. Bayes factor - Wikipedia

    en.wikipedia.org/wiki/Bayes_factor

    The Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. [1] The models in question can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation.

  9. Hyperparameter (Bayesian statistics) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(Bayesian...

    In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution , then: