Search results
Results from the WOW.Com Content Network
In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One description of a parabola involves a point (the focus) and a line (the directrix). The focus does not lie on the ...
While a parabolic arch may resemble a catenary arch, a parabola is a quadratic function while a catenary is the hyperbolic cosine, cosh(x), a sum of two exponential functions. One parabola is f(x) = x 2 + 3x − 1, and hyperbolic cosine is cosh(x) = e x + e −x / 2 . The curves are unrelated.
Regardless of the format, the graph of a univariate quadratic function () = + + is a parabola (as shown at the right). Equivalently, this is the graph of the bivariate quadratic equation = + +. If a > 0, the parabola opens upwards. If a < 0, the parabola opens downwards.
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...
Examples of the most studied classes of algebraic varieties are lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation.
The basic example of a parabolic PDE is the one-dimensional heat equation u t = α u x x , {\displaystyle u_{t}=\alpha \,u_{xx},} where u ( x , t ) {\displaystyle u(x,t)} is the temperature at position x {\displaystyle x} along a thin rod at time t {\displaystyle t} and α {\displaystyle \alpha } is a positive constant called the thermal ...
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.