Search results
Results from the WOW.Com Content Network
The ancient Greek astronomer Hipparchus noted the apsidal precession of the Moon's orbit (as the revolution of the Moon's apogee with a period of approximately 8.85 years); [4] it is corrected for in the Antikythera Mechanism (circa 80 BCE) (with the supposed value of 8.88 years per full cycle, correct to within 0.34% of current measurements). [5]
The apsides refer to the farthest (2) and nearest (3) points reached by an orbiting planetary body (2 and 3) with respect to a primary, or host, body (1). An apsis (from Ancient Greek ἁψίς (hapsís) 'arch, vault'; pl. apsides / ˈ æ p s ɪ ˌ d iː z / AP-sih-deez) [1] [2] is the farthest or nearest point in the orbit of a planetary body about its primary body.
Log-log plot of period T vs semi-major axis a (average of aphelion and perihelion) of some Solar System orbits (crosses denoting Kepler's values) showing that a³/T² is constant (green line) For comparison, here are modern estimates: [ citation needed ]
This is a list of Solar System objects by greatest aphelion or the greatest distance from the Sun that the orbit could take it if the Sun and object were the only objects in the universe. It is implied that the object is orbiting the Sun in a two-body solution without the influence of the planets, passing stars, or the galaxy.
The Earth spends less time near perihelion and more time near aphelion. This means that the lengths of the seasons vary. [ 14 ] Perihelion currently occurs around 3 January, so the Earth's greater velocity shortens winter and autumn in the northern hemisphere, and summer and spring in the southern hemisphere.
Log-log plot of period T vs semi-major axis a (average of aphelion and perihelion) of some Solar System orbits (crosses denoting Kepler's values) showing that a 3 / T 2 is constant (green line) In astrodynamics the orbital period T of a small body orbiting a central body in a circular or elliptical orbit is: [1]
[note 1] Earth moves more rapidly around the Sun near perihelion, in early January, than near aphelion, in early July. This makes processes like the variation of the solar declination happen faster in January than in July. On the graph, this makes the minima more acute than the maxima.
The material in the "Perihelion and aphelion" article is either already stated in the Apsis article or original content that can easily fit in as a section on the "Apsis" article. The "Perihelion and aphelion" article is too small to justify its own existence as a separate page, in my opinion.