enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fresnel diffraction - Wikipedia

    en.wikipedia.org/wiki/Fresnel_diffraction

    Fresnel diffraction of circular aperture, plotted with Lommel functions. This is the Fresnel diffraction integral; it means that, if the Fresnel approximation is valid, the propagating field is a spherical wave, originating at the aperture and moving along z. The integral modulates the amplitude and phase of the spherical wave.

  3. Kirchhoff's diffraction formula - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_diffraction...

    Kirchhoff's integral theorem, sometimes referred to as the Fresnel–Kirchhoff integral theorem, [3] uses Green's second identity to derive the solution of the homogeneous scalar wave equation at an arbitrary spatial position P in terms of the solution of the wave equation and its first order derivative at all points on an arbitrary closed surface as the boundary of some volume including P.

  4. Talbot effect - Wikipedia

    en.wikipedia.org/wiki/Talbot_effect

    At regular fractions of the Talbot length the sub-images form. The Talbot effect is a diffraction effect first observed in 1836 by Henry Fox Talbot. [1] When a plane wave is incident upon a periodic diffraction grating, the image of the grating is repeated at regular distances away from the grating plane. The regular distance is called the ...

  5. Huygens–Fresnel principle - Wikipedia

    en.wikipedia.org/wiki/Huygens–Fresnel_principle

    Kirchhoff showed that in many cases, the theorem can be approximated to a simpler form that is equivalent to the formation of Fresnel's formulation. [ 3 ] For an aperture illumination consisting of a single expanding spherical wave, if the radius of the curvature of the wave is sufficiently large, Kirchhoff gave the following expression for K ...

  6. Arago spot - Wikipedia

    en.wikipedia.org/wiki/Arago_spot

    Notation for calculating the wave amplitude at point P 1 from a spherical point source at P 0.. At the heart of Fresnel's wave theory is the Huygens–Fresnel principle, which states that every unobstructed point of a wavefront becomes the source of a secondary spherical wavelet and that the amplitude of the optical field E at a point on the screen is given by the superposition of all those ...

  7. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    There are various analytical models for photons which allow the diffracted field to be calculated, including the Kirchhoff diffraction equation (derived from the wave equation), [16] the Fraunhofer diffraction approximation of the Kirchhoff equation (applicable to the far field), the Fresnel diffraction approximation (applicable to the near ...

  8. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.

  9. Near and far field - Wikipedia

    en.wikipedia.org/wiki/Near_and_far_field

    Differences between Fraunhofer diffraction and Fresnel diffraction. The near field itself is further divided into the reactive near field and the radiative near field. The reactive and radiative near-field designations are also a function of wavelength (or distance). However, these boundary regions are a fraction of one wavelength within the ...