Search results
Results from the WOW.Com Content Network
Conversely, if it has more protons than electrons, it has a positive charge, and is called a positive ion (or cation). The electrons of an atom are attracted to the protons in an atomic nucleus by the electromagnetic force. The protons and neutrons in the nucleus are attracted to each other by the nuclear force. This force is usually stronger ...
Protons define the entire charge of a nucleus, and hence its chemical identity. Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic ...
For example, a neutral chlorine atom has 17 protons and 17 electrons, whereas a Cl − anion has 17 protons and 18 electrons for a total charge of −1. All atoms of a given element are not necessarily identical, however. The number of neutrons may vary to form different isotopes, and energy levels may differ, resulting in different nuclear ...
For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (n p) or the number of protons found in the nucleus of every atom of that element. The atomic number can be used to uniquely identify ordinary chemical elements. In an ordinary uncharged atom, the atomic number is also equal to the number of electrons.
Work (energy) is required to bring charged protons together against their electric repulsion. This energy is stored when the protons and neutrons are bound together by the nuclear force to form a nucleus. The mass of a nucleus is less than the sum total of the individual masses of the protons and neutrons.
The atomic nucleus is a bound system of protons and neutrons. The spatial extent and shape of the nucleus depend not only on the size and shape of discrete nucleons, but also on the distance between them (the inter-nucleon distance). (Other factors include spin, alignment, orbital motion, and the local nuclear environment (see EMC effect).)
Since protons and neutrons behave similarly within the nucleus, they are both referred to as nucleons. Nucleons have a mass of approximately one atomic mass unit, or dalton (symbol: Da). Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.
Then, because electrons are leptons, and protons and neutrons are made of quarks, this definition in turn leads to the definition of matter as being "quarks and leptons", which are two of the four types of elementary fermions (the other two being antiquarks and antileptons, which can be considered antimatter as described later).