Search results
Results from the WOW.Com Content Network
A non-Sun-synchronous orbit (magenta) is also shown for reference. Dates are shown in white: day/month. A Sun-synchronous orbit (SSO), also called a heliosynchronous orbit, [1] is a nearly polar orbit around a planet, in which the satellite passes over any given point of the planet's surface at the same local mean solar time.
Polar orbits are used for Earth-mapping, reconnaissance satellites, as well as for some weather satellites. [2] The Iridium satellite constellation uses a polar orbit to provide telecommunications services. Near-polar orbiting satellites commonly choose a Sun-synchronous orbit, where each successive orbital pass occurs at the same local time of ...
Polar orbit: An orbit that passes above or nearly above both poles of the planet on each revolution. Therefore, it has an inclination of (or very close to) either 90 degrees or −90 degrees. Polar Sun-synchronous orbit (SSO): A nearly polar orbit that passes the equator at the same local solar time on every pass.
A synchronous orbit around Earth that is circular and lies in the equatorial plane is called a geostationary orbit. The more general case, when the orbit is inclined to Earth's equator or is non-circular is called a geosynchronous orbit. The corresponding terms for synchronous orbits around Mars are areostationary and areosynchronous orbits.
In science class, we always learned that all the planets in our solar system orbit around the sun. Scientists have figured out this is not necessarily true. Jupiter actually does not orbit the sun
The value of a solar beta angle for a satellite in Earth orbit can be found using the equation = [ + ()] where is the ecliptic true solar longitude, is the right ascension of ascending node (RAAN), is the orbit's inclination, and is the obliquity of the ecliptic (approximately 23.45 degrees for Earth at present).
For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern.
Earth-Sun L 2 —approximately 1.5 million kilometers from Earth in the anti-sun direction—is another important Lagrange point, and the ESA Herschel space observatory operated there in a Lissajous orbit during 2009–2013, at which time it ran out of coolant for the space telescope. Small station-keeping orbital maneuvers were executed ...