Search results
Results from the WOW.Com Content Network
In 1905, Albert Einstein published a paper advancing the hypothesis that light energy is carried in discrete quantized packets to explain experimental data from the photoelectric effect. Einstein theorized that the energy in each quantum of light was equal to the frequency of light multiplied by a constant, later called the Planck constant .
In explaining the photoelectric effect, the hypothesis that energy consists of discrete packets, as Einstein illustrates, can be directly applied to black bodies, as well. The idea of light quanta contradicts the wave theory of light that follows naturally from James Clerk Maxwell 's equations for electromagnetic behavior and, more generally ...
[3] [4] Einstein is best known by the general public for his mass–energy equivalence formula E = mc 2 (which has been dubbed "the world's most famous equation"). [5] He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect ", a pivotal step in ...
To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an electromagnetic field consists of particles of energy of amount hν, where h is the Planck constant and ν is the wave frequency.
In the late 17th century, Sir Isaac Newton had advocated that light was particles, but Christiaan Huygens took an opposing wave approach. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.
Einstein's paper on the photoelectric effect is sixth on this list. The following chronology of Einstein's scientific discoveries provides a context for the publications listed below, and clarifies the major themes running through his work. Einstein's scientific career can be broadly divided into to periods.
To explain the photoelectric effect, Einstein introduced the idea that light itself is made of discrete units of energy. In 1926, Gilbert N. Lewis popularized the term photon for these energy units. [3] [4] [5] Subsequently, many other experiments validated Einstein's approach. [6] [7] [8]
This formula defines the photoelectric effect. Not every photon which encounters an atom or ion will photoionize it. The probability of photoionization is related to the photoionization cross-section, which depends on the energy of the photon and the target being considered. For photon energies below the ionization threshold, the ...