Search results
Results from the WOW.Com Content Network
[citation needed] Even if the photoelectric effect is the favoured reaction for a particular interaction of a single photon with a bound electron, the result is also subject to quantum statistics and is not guaranteed. The probability of the photoelectric effect occurring is measured by the cross section of the interaction, σ. This has been ...
Even after experiments confirmed that Einstein's equations for the photoelectric effect were accurate, his explanation was not universally accepted. Niels Bohr, in his 1922 Nobel address, stated, "The hypothesis of light-quanta is not able to throw light on the nature of radiation."
Einstein himself considered the introduction of the cosmological constant in his 1917 paper founding cosmology as a "blunder". [3] The theory of general relativity predicted an expanding or contracting universe, but Einstein wanted a static universe which is an unchanging three-dimensional sphere, like the surface of a three-dimensional ball in four dimensions.
The photoelectric effect: Einstein explained this in 1905 (and later received a Nobel prize for it) using the concept of photons, particles of light with quantized energy. Robert Millikan's oil-drop experiment, which showed that electric charge occurs as quanta (whole units). (1909)
To explain the photoelectric effect, Einstein introduced the idea that light itself is made of discrete units of energy. In 1926, Gilbert N. Lewis popularized the term photon for these energy units. [3] [4] [5] Subsequently, many other experiments validated Einstein's approach. [6] [7] [8]
To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an electromagnetic field consists of particles of energy of amount hν, where h is the Planck constant and ν is the wave frequency.
A letter written by Albert Einstein in which he writes out his famous E = mc2 equation has sold at auction for more than $1.2 million, about three times more than it was expected to get, Boston ...
This formula defines the photoelectric effect. Not every photon which encounters an atom or ion will photoionize it. The probability of photoionization is related to the photoionization cross-section, which depends on the energy of the photon and the target being considered. For photon energies below the ionization threshold, the ...