Search results
Results from the WOW.Com Content Network
The BN-350 fast-neutron reactor at Aktau, Kazakhstan.It operated between 1973 and 1994. A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors.
Some reactions are only possible with fast neutrons: (n,2n) reactions produce small amounts of protactinium-231 and uranium-232 in the thorium cycle which is otherwise relatively free of highly radioactive actinide products. 9 Be + n → 2α + 2n can contribute some additional neutrons in the beryllium neutron reflector of a nuclear weapon.
The first printed edition of the Karlsruhe Nuclide Chart of 1958 in the form of a wall chart was created by Walter Seelmann-Eggebert and his assistant Gerda Pfennig. Walter Seelmann-Eggebert was director of the Radiochemistry Institute in the 1956 founded "Kernreaktor Bau- und Betriebsgesellschaft mbH" in Karlsruhe, Germany (a predecessor institution of the later "(Kern-)Forschungszentrum ...
Neutron number increases along the line of beta stability at a faster rate than atomic number. The line of beta stability follows a particular curve of neutron–proton ratio, corresponding to the most stable nuclides. On one side of the valley of stability, this ratio is small, corresponding to an excess of protons over neutrons in the nuclides.
Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.
An example of a nucleogenic nuclide is neon-21 produced from neon-20 that absorbs a thermal neutron (though some neon-21 is also primordial). [1] Other nucleogenic reactions that produce heavy neon isotopes are (fast neutron capture, alpha emission) reactions, starting with magnesium-24 and magnesium-25, respectively. [2]
Associated particle imaging (API), sometimes referred to as the tagged neutron method (TNM), [1] [2] is a three dimensional imaging technique that maps the distribution of elements within an object. In associated particle imaging, deuterium-tritium fusion reactions each produce a fast neutron and an associated particle (such as an alpha ...
A fast neutron reactor uses fast neutrons, so it does not use a moderator. Moderators may absorb a lot of neutrons in a thermal reactor , and fast fission produces a higher average number of neutrons per fission, so fast reactors have better neutron economy making a plutonium breeder reactor possible.