Search results
Results from the WOW.Com Content Network
where x is the pressure divided by the vapor pressure for the adsorbate at that temperature (usually denoted /), v is the STP volume of adsorbed adsorbate, v mon is the STP volume of the amount of adsorbate required to form a monolayer, and c is the equilibrium constant K we used in Langmuir isotherm multiplied by the vapor pressure of the ...
The adsorbent, as indicated in the figure, is assumed to be an ideal solid surface composed of a series of distinct sites capable of binding the adsorbate. The adsorbate binding is treated as a chemical reaction between the adsorbate gaseous molecule A g {\displaystyle A_{\text{g}}} and an empty sorption site S .
Chemisorption is a kind of adsorption which involves a chemical reaction between the surface and the adsorbate. New chemical bonds are generated at the adsorbent surface. Examples include macroscopic phenomena that can be very obvious, like corrosion [clarification needed], and subtler effects associated with heterogeneous catalysis, where the catalyst and reactants are in different pha
Adsorption is the process by which a gas (or solution) phase molecule (the adsorbate) binds to solid (or liquid) surface atoms (the adsorbent). The reverse of adsorption is desorption, the adsorbate splitting from adsorbent. In a reaction facilitated by heterogeneous catalysis, the catalyst is the adsorbent and the reactants are the adsorbate.
Adsorption is a mass transfer process in which a substance is transported from the liquid phase to the surface of a solid/liquid (adsorbent) and becomes physically and chemically bonded (adsorbate). Adsorption can be classified into two forms based on the type of attraction between the adsorbate and the adsorbent: physical and chemical ...
In physisorption, perturbation of the electronic states of adsorbent and adsorbate is minimal. The adsorption forces include London Forces, dipole-dipole attractions, dipole-induced attraction and "hydrogen bonding." For chemisorption, changes in the electronic states may be detectable by suitable physical means, in other words, chemical bonding.
An adsorption isotherm is a graph of Γ(P,T) versus partial pressure of the adsorbate(P/P 0) for a given constant temperature, where Γ(P,T) is the number of molecules adsorbed per surface area. [1] As the partial pressure of the adsorbate increases, the number of molecules per area also increases.
The adsorbate coverage is defined as the ratio between occupied and available adsorption sites. [3] The order of desorption, also known as the kinetic order, describes the relationship between the adsorbate coverage and the rate of desorption.