enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    Bootstrap aggregating, also called bagging (from bootstrap aggregating) or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms. It also reduces variance and overfitting.

  5. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    A support-vector machine is a supervised learning model that divides the data into regions separated by a linear boundary. Here, the linear boundary divides the black circles from the white. Supervised learning algorithms build a mathematical model of a set of data that contains both the inputs and the desired outputs. [47]

  6. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    In statistics and machine learning, the bias–variance tradeoff describes the relationship between a model's complexity, the accuracy of its predictions, and how well it can make predictions on previously unseen data that were not used to train the model. In general, as we increase the number of tunable parameters in a model, it becomes more ...

  7. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    More abstractly, learning curves plot the difference between learning effort and predictive performance, where "learning effort" usually means the number of training samples, and "predictive performance" means accuracy on testing samples. [3] Learning curves have many useful purposes in ML, including: [4] [5] [6] choosing model parameters ...

  8. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    A common strategy is to grow the tree until each node contains a small number of instances then use pruning to remove nodes that do not provide additional information. [1] Pruning should reduce the size of a learning tree without reducing predictive accuracy as measured by a cross-validation set. There are many techniques for tree pruning that ...

  9. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Conjoint analysis with a bilinear model. 45,811,883 user visits Text Regression, clustering 2009 [473] [474] Chu et al. British Oceanographic Data Centre Biological, chemical, physical and geophysical data for oceans. 22K variables tracked. Various. 22K variables, many instances Text Regression, clustering 2015 [475] British Oceanographic Data ...